If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2=-2k+6
We move all terms to the left:
3k^2-(-2k+6)=0
We get rid of parentheses
3k^2+2k-6=0
a = 3; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·3·(-6)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{19}}{2*3}=\frac{-2-2\sqrt{19}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{19}}{2*3}=\frac{-2+2\sqrt{19}}{6} $
| 7+n-6n=17 | | 45+30x=100+25x | | 45x+30=100x+25 | | 3(2x-14)+x=15-x(-9-5) | | 4,200=11x-4*50 | | 0.3(6x-5)=-1.8x-1.5 | | Y^2-21x+108=0 | | 5^x-9=20 | | m-1+7=3 | | 33x+25=33x-25 | | x-534=811 | | 3(x-4/3)=3x+15000 | | 1376x=5425+314x | | t=-t^2+4t+9 | | 420x^2=8x | | 18d^2+77d-18=1 | | 8+n/2=-4 | | 18d^2+77d-18=0 | | 92=2+6x | | 12x+20=2x+27 | | n+1+5=14 | | 65+x+10+x-20=180 | | 0=6x^2+17x+5 | | 80-6x=14x | | -13/4a=13/4 | | -3(x+3)+14=10-4x | | -3+n/5=-12 | | 0.75*7+c=2.80 | | 3-1k+6k=13 | | 13/4a=13/4 | | x+45=2x+30 | | F(x)=2x-3x-5 |